Baseline Monitoring of VSP Parameters for Spring Chinook Salmon and Steelhead Trout Above and Below Project Dams

Cameron Sharpe
Oregon Department of Fish and Wildlife Willamette Science Review
January 30 - February 1, 2012

Willamette Biological Opinion Hatchery Research, Monitoring, and Evaluation

OREGON

- Hatchery RME Activities

- Monitoring hatchery operations and conducting research focused on hatchery programs
- Spawning ground surveys (upstream \& downstream of dams),
- Distribution \& abundance of redds, carcass sampling, proportion hatcheryorigin spawners (PHOS) prespawn mortality, straying, diversity

The Willamette Basin

VSP Monitoring Guidelines

(Crawford and Rumsey 2011)

- VSP Adult Spawner Abundance
- Incorporate a robust unbiased adult spawner abundance sampling design with known precision and accuracy
- Monitor ratio of marked hatchery salmon and steelhead to unmarked natural origin fish in all adult spawner surveys
- Calculate the average coefficient of variation for all adult natural origin spawner databases for ESA populations and provide that information to all interested parties
- Provide adult spawner data with a coefficient of variation (CV) on average of 15% or less for all ESA population
- Conduct a power analysis for each natural population monitored within an ESU to determine the power of the data to detect a significant change in abundance and to provide that information to all interested parties
- Promote standardization of methodologies

VSP Monitoring Guidelines (Crawford and Rumsey 2011)

- VSP Productivity
- Develop at least 12 brood years of accurate spawner information as derived from cohort analysis in order that NOAA can use the geometric mean of recruits per spawner to develop strong productivity estimates
- Obtain estimates of juvenile migrants for at least one significant population for each major population group (MPG) within an ESU or distinct population segment (DPS)

VSP Monitoring Guidelines

 (Crawford and Rumsey 2011)- VSP Spatial Distribution
-Determine spatial distribution of listed species with the ability to detect a change in distribution of $\pm 15 \%$ with 80\% certainty

VSP Monitoring Guidelines

(Crawford and Rumsey 2011)

- VSP Species Diversity
- Short term strategy: use species distribution, spawn timing, age distribution, fecundity, and sex ratios to determine status/trend in species diversity of natural populations
- Long term strategy: Directly monitor genetic diversity (SNPs baseline for each population within each MPG and ESU/DPS)

Additional Monitoring Guidelines

 (Crawford and Rumsey 2011)- Threats Due To Hatchery Production
- Determine annually the percent hatchery origin spawners (PHOS) and natural origin spawners (PNOS) for each population. Estimates should be evaluated to determine their precision and ability to detect changes and to determine the trend toward reaching Hatchery and Genetic Management Plan (HGMP) targets
- Periodically calculate proportion of natural influence (PNI) for primary populations within the ESU for supplementation
- Every hatchery should monitor the spatial and temporal distribution of juvenile fish released from the program

Four Ongoing "Uncertainty Research" Projects

- Basinwide genetic diversity of spring Chinook
- Genetic stock identification and relative natural production of Willamette River steelhead
- Hatchery-wild crosses of spring Chinook salmon in the context of reintroduction
- Spring Chinook liberation strategies

Winter-run

Steelhead Trout

Upper Willamette Steelhead DPS

Methods

Video counts at Willamette Falls
Trap counts at Minto (N. Santiam) and Foster Dam (S. Santiam)

Peak redd counts in index reaches

Winter Steelhead Counts and Redd Surveys

Brood Year	Dam/Trap/Ladder Counts			Redds per Mile			
	Willamette Falls	Minto	Foster	Molalla	North Santiam	South Santiam	Calapooia
1980	16097	1140	515	25.2			8.0
1981	9004	918	317	20.6			5.5
1982	6894	207	399	18.1			13.4
1983	4702	71	200	12.4	31.0	15.4	10.8
1984	10720	307	1497	17.5			
1985	16043	303	984	24.4	51.6	29.2	15.8
1986	12776	523	811				
1987	8222	498	467		33.5	20.7	13.7
1988	15007	844	1079	21.5	18.1	20.0	12.5
1989	5361	187	284	17.2	35.0	13.4	5.2
1990	9229	208	282				
1991	2722	166	139	10.9	25.5	20.7	8.8
1992	3679	355	363	14.8	18.4	18.1	3.4
1993	2725	23	258	4.5	20.4	9.8	1.1
1994	4275	235	234	18.1	19.4	17.2	4.6
1995	2702	164	297	7.0	13.0		3.1
1996	1322	28	131	3.1			
1997	3925	149	337	4.6	15.6	6.1	7.2
1998	2924	231	359	11.0	21.0	6.5	10.2
1999	5697	249	328	8.5			
2000	3359	168	326	14.8			6.4
2001	10752	1156	783	12.9	25.0	23.6	12.7
2002	11092	436	1002		23.9	12.1	10.0
2003	6665	173	850		29.7	11.2	13.1
2004	8087	330	1015	31.6	28.6	24.0	19.5
2005	4623	662	626		12.2	8.5	3.8
2006	3251	225	419	9.4	13.1	6.6	6.3
2007	3388	77	210		10.0	14.4	5.2
2008	2589		253		2.3		
2009	2110		192				1.1
2010	4856	143	426		5.7	1.5	4.8
2011						5.6	3.8

Winter Steelhead Adult Counts

Winter Steelhead Adult Counts

Winter Steelhead Redd Surveys

Summary

- For Steelhead...
- Continued evidence for a decreasing trend in abundance counterbalanced by evidence for resiliency within the populations
- Need for increased emphasis on expanding survey efforts throughout the DPS (at least)
- Needs to yield abundance, productivity, distribution AND diversity
- Very substantial issues with escapement of hatchery fish still exist (Teel and Vandoornik work on this issue is underway)

Spring Chinook Salmon

Methods

2011 Redds and Deads

Basin, section
Redds mi \quad d $\begin{aligned} & \text { Processed } \\ & \text { Carcasses }\end{aligned}$ Unclipped Clipped $\begin{aligned} & \text { PHOS }\end{aligned}$ PNOS
Spawned Unspawned Females Females

PSM

McKenzie

above forest Glen	868	46.2	18.8	253	223	30	12%	88%	165	3	2%
Leaburg - Forest Glen	300	18.1	16.6	102	63	39	38%	62%	48	7	13%
below Leaburg Dam	220	6	36.7	197	79	118	60%	40%	95	23	19%

North Santiam

above Bennett Dam	568	23.5	24.2	777	288	489	63%	37%

South Santiam

above Lebanon Dam	542	15	36.1	750	185	565	75%	25%	441	72	14%
below Lebanon Dam	3	9.5	0.3	9	1	8	89%	11%	1	5	83%
Above Foster	232	18	12.9	283	283	0	0%	100%	95	34	26%

Mid. Fk Willamette

Dexter-Jasper	99	9	11.0	137	41	96	70%	30%	70
24	26%								
NF Middle Fork	115	18.1	6.4	56	2	54	96%	4%	8
32	80%								
Fall Creek	58	16.3	3.6	64	64	0	0%	100%	20
Little Fall Cr	55	5.1	10.8	30	3	27	90%	10%	11

North Santiam River 2011

South Santiam River 2011

McKenzie River 2011

Middle Fork Willamette River 2011

Additional Monitoring Guidelines

 (Crawford and Rumsey 2011)- Threats Due To Hatchery Production
- Determine annually the percent hatchery origin spawners (PHOS) and natural origin spawners (PNOS) for each population. Estimates should be evaluated to determine their precision and ability to detect changes and to determine the trend toward reaching Hatchery and Genetic Management Plan (HGMP) targets
- Periodically calculate proportion of natural influence (PNI) for primary populations within the ESU for supplementation
- Every hatchery should monitor the spatial and temporal distribution of juvenile fish released from the program
"Uncertainty Research" Addressing Additional Monitoring Guidelines
- Effect of size and time of hatchery Chinook releases on outmigration and adult returns
- Overarching Objectives
- Rear and release hatchery spring Chinook salmon to mimic size and behavior of naturally produced yearling migrants
- Investigate alternative rearing and release strategies to increase the proportion of fish returning.

Methods

- The proposed work combines an assessment of in-river performance of released fish by tracking migration and survival of individual releases with an assessment of smolt to adult return (SAR) following recovery of coded wire tagged fish in fisheries, at hatcheries, and during spawner surveys.

Outmigration Timing

Outmigrant Size

November Release

Summary

- For Chinook...
- Alignment between NOAA Guidance and reality is imperfect
- Need to increase statistical rigor of abundance estimates
- Need to add a focus on juvenile production
- Estimates of diversity based on phenotypic variability is a reality now
- Work on direct estimates of genetic diversity underway
- Substantial issues with escapement of hatchery fish, PSM, the mechanics of introducing fish to depauperate habitat, and patterns of hatchery juvenile emigration still exist

Acknowledgments

- Funding: US Army Corps of Engineers and Federal Sport Fish Restoration Fund
- New Analyses and Archival Data
- Juvenile Hatchery Outmigration: Craig Tinus
- Steelhead Survey Data: Steve Mamoyac
- Fall Cr Steelhead Counts: Greg Taylor
- Leaburg Steelhead Counts: Mike Hogansen
- Steelhead Status and Trends: Kevin Goodson
- Maps: Paul Olmsted and Erin Gilbert
- Field Staff: Awesome!

